Evolving Takagi-Sugeno-Kang Fuzzy Systems using Multi Population Grammar-Guided Genetic Programming
نویسندگان
چکیده
This work proposes a novel approach for the automatic generation and tuning of complete Takagi-SugenoKang fuzzy rule based systems. The examined system aims to explore the effects of a reduced search space for a genetic programming framework by means of grammar guidance that describes candidate structures of fuzzy rule based systems. The presented approach applies context-free grammars to generate individuals and evolve solutions through the search process of the algorithm. A multi-population approach is adopted for the genetic programming system, in order to increase the depth of the search process. Two candidate grammars are examined in one regression problem and one system identification task. Preliminary results are included and discussion proposes further research directions.
منابع مشابه
Local and global optimization for Takagi-Sugeno fuzzy system by memetic genetic programming
This work presents a method to incorporate standard neuro-fuzzy learning for Takagi–Sugeno fuzzy systems that evolve under a grammar driven genetic programming (GP) framework. This is made possible by introducing heteroglossia in the functional GP nodes, enabling them to switch behavior according to the selected learning stage. A context-free grammar supports the expression of arbitrarily sized...
متن کاملRule Chains for Visualizing Evolving Fuzzy Rule-Based Systems
Evolving fuzzy systems are data-driven fuzzy (rule-based) systems supporting an incremental model adaptation in dynamically changing environments; typically, such models are learned on a continuous stream of data in an online manner. This paper advocates the use of visualization techniques in order to help a user gain insight into the process of model evolution. More specifically, rule chains a...
متن کاملSliding mode incremental learning algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy neural networks
Type-2 fuzzy logic systems are an area of growing interest over the last years. The ability to model uncertainties and to perform under noisy conditions in a better way than type-1 fuzzy logic systems increases their applicability. A new stable on-line learning algorithm for interval type-2 Takagi–Sugeno–Kang (TSK) fuzzy neural networks is proposed in this paper. Differently from the other rece...
متن کاملAdmissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملROBUST FUZZY CONTROL DESIGN USING GENETIC ALGORITHM OPTIMIZATION APPROACH: CASE STUDY OF SPARK IGNITION ENGINE TORQUE CONTROL
In the case of widely-uncertain non-linear system control design, it was very difficult to design a single controller to overcome control design specifications in all of its dynamical characteristics uncertainties. To resolve these problems, a new design method of robust fuzzy control proposed. The solution offered was by creating multiple soft-switching with Takagi-Sugeno fuzzy model for optim...
متن کامل